Cantor systems and quasi-isometry of groups
نویسندگان
چکیده
منابع مشابه
Quasi-isometry rigidity of groups
2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملQuasi-isometry Classification of Certain Right-angled Coxeter Groups
We investigate the quasi-isometry classification of the right-angled Coxeter groups WΓ which are 1-ended and have triangle-free defining graph Γ. We begin by characterising those WΓ which split over 2-ended subgroups, and those which are cocompact Fuchsian, in terms of properties of Γ. This allows us to apply a theorem of Papasoglu [21] to distinguish several quasi-isometry classes. We then car...
متن کاملQuasi-isometry Invariance of Novikov-shubin Invariants for Amenable Groups
We use the notion of uniform measure equivalence to prove that the Novikov-Shubin invariants resp. the capacities of amenable groups are invariant under quasi-isometry. Further, we comment on the connection to Gaboriau’s theorem on the invariance of L-Betti numbers under orbit equivalence.
متن کاملHomological Invariants and Quasi - Isometry
Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ra...
متن کاملExtensions of Cantor Minimal Systems and Dimension Groups
Given a factor map p : (X, T )→ (Y, S) of Cantor minimal systems, we study the relations between the dimension groups of the two systems. First, we interpret the torsion subgroup of the quotient of the dimension groups K0(X)/K0(Y ) in terms of intermediate extensions which are extensions of (Y, S) by a compact abelian group. Then we show that, by contrast, the existence of an intermediate non-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2017
ISSN: 0024-6093
DOI: 10.1112/blms.12059